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Abstract—Mobile crowdsensing (MCS) is a newly emerged
sensing paradigm, where a large group of mobile workers collec-
tively sense and share data for real-time services. However, one
major problem that hinders the further development of MCS is
the potential leakage of workers’ data privacy. In this article,
we integrate federated learning (FL) with MCS and introduce a
novel sensing system, called federated MCS (F-MCS). In F-MCS,
the workers can optimize the global model while keeping all the
sensitive training data locally, thus ensuring their data privacy.
Nevertheless, there are still two major issues in F-MCS. The first
issue is that in F-MCS services, the workers are heterogeneous
in terms of computational capacities and data resources. Hence,
qualified workers should be appropriately selected to improve
the efficiency of the training process. The second issue is that
F-MCS is a cross-device FL system, where the platform will finally
get the global model after multiple training rounds. However,
most privacy-preserving techniques are designed for cross-silo
FL platforms, which cannot be applied to real-world F-MCS
scenarios. To tackle the above problems, in this article, we pro-
pose a privacy-preserving scheme for F-MCS, namely, FedSky.
Mainly, by extending the classic FedAvg algorithm, FedSky
selects qualified workers based on the constrained group sky-
line (CG-skyline) and securely aggregates model updates based
on the homomorphic encryption technique. Comprehensive secu-
rity analysis demonstrates the privacy preservation of FedSky.
Extensive experiments are conducted on an image classifica-
tion task, where the comparison results validate the proposed
scheme’s efficiency and effectiveness.

Index Terms—FedAvg, federated learning (FL), group skyline
(G-skyline), homomorphic encryption (HE), mobile crowdsensing
(MCS).
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I. INTRODUCTION

OVER the past few years, the explosions of mobile com-
munication and the Internet of Things (IoT) have brought

forth a new paradigm of sensing approach, called mobile
crowdsensing (MCS) [1]. Essentially, a crowd of mobile
users, namely, workers, is recruited by the MCS platform to
outsource their sensing data for certain tasks, such as envi-
ronmental monitoring [2], traffic density evaluation [3], urban
planning [4], location navigation [5], and healthcare provision-
ing [6]. However, it is inevitable for the workers to share their
sensing information (e.g., daily trajectories, real-time loca-
tions, and surrounding environments) to the platform during
the sensing task. The information leakage may lead to serious
privacy issues. For example, an attacker may infer a worker’s
daily behavior by analyzing his/her sensing data. As a result,
protecting workers’ sensitive information from being disclosed
is one of the major challenges for MCS applications.

Up to now, a large and growing body of literature has been
studied for solving the privacy challenges in MCS. Among
all the studies, federated learning (FL) can be considered a
potential and practical solution. In FL, the platform iteratively
selects random workers to download a trainable model [7].
Then, the selected workers update the model with their own
data and upload the updated model to the platform. After that,
the platform aggregates multiple updates to further improve the
model [8]. The distributed nature of FL enables the workers to
optimize the shared model while keeping all the training data
locally, thus ensuring their privacy. Based on [9] and [10], FL
can be broadly categorized into cross-silo FL and cross-device
FL. In cross-silo FL, the workers are functional organizations
(e.g., financial agencies) with abundant computing resources.
The trained model is exclusively released to these organiza-
tions, but not the FL aggregation platform. In contrast, in
the cross-device FL, the workers are heterogeneous mobile
users with limited computational powers. The FL platform will
finally get access to the trained model.

In this article, by introducing cross-device FL into MCS,
we propose a novel sensing scenario, called federated MCS
(F-MCS). F-MCS allows workers to build a robust and secure
machine learning model without sharing their sensing data.
As a result, F-MCS can address the critical issue of work-
ers’ information leakage in traditional MCS systems and is
expected to become a new hotspot of mobile sensing services.

Nevertheless, there are still two major issues if we simply
integrate the FL technique with MCS services.
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1) The selection of stable workers in F-MCS is challenging.
In F-MCS, the mobile workers are heterogeneous with
different computational capacities and data resources.
For example, their devices are different in terms of hard-
ware (CPU and memory), network connectivity (3G,
4G, 5G, Wi-Fi, and signal strength), and power status
(battery level and charging capacities). The synchronous
training protocol [10] is widely used in FL, where no
worker can proceed to the next training round until all
workers’ data have been uploaded. The workers with
limited computational powers require a longer time to
update the model parameters. Therefore, such a problem
will delay the subsequent aggregation step and make the
overall training process inefficient.

2) The lack of practical privacy-preserving solutions for
cross-device F-MCS platforms. Even though the workers
can avoid leaking their sensing data in F-MCS, they still
face possible information disclosure. Specifically, the
shared model information (e.g., the gradient) uploaded
by the workers can leak important statistical pat-
terns of the local data sets [11]–[13]. Consequently,
homomorphic encryption (HE)-based privacy-preserving
data aggregation techniques have been well-studied
for enhancing the privacy of FL platforms [14].
However, most of the approaches are designed for
cross-silo FL setting, where the final global model
can only be accessed by the participants (i.e., work-
ers) [10], [11], [15]–[19]. In contrast, F-MCS is a
cross-device FL system, where the final model will be
released to the F-MCS platform for certain real-time
services. Hence, the existing methods cannot be applied
in F-MCS. There is an immediate necessity for designing
practical and privacy-preserving solutions for F-MCS
applications.

In this article, aiming at solving the above challenges,
we propose a novel and secure data aggregation scheme for
F-MCS applications, called FedSky. By extending the classic
FedAvg algorithm [20], FedSky is characterized by employ-
ing group skyline (G-skyline) for selecting qualified workers
and HE for securely aggregating data. Specifically, the main
contributions of this article are threefold as follows.

1) We propose a novel and effective worker selection
mechanism in FedSky for F-MCS. Concretely, in each
communication round, instead of choosing a group of
workers at random, we select a skyline group of workers
in terms of workers’ local data sizes and their mobile
devices’ computational powers. In this way, compared
to the traditional FedAvg algorithm, our approach can
significantly reduce workers’ computational time and
the platform’s waiting time and, therefore, significantly
maximize the efficiency of the FL process.

2) We propose a novel privacy-preserving data aggrega-
tion scheme for the F-MCS platform based on the HE
technique. The scheme is designed for the cross-device
FL setting such that the final global model can be
accessed by the F-MCS platform. In addition, the over-
all training process requires no interaction between the
selected workers. Except for the left neighbor ID and

Fig. 1. System model under consideration.

right neighbor ID, each selected worker knows nothing
about other workers’ information.

3) We build a custom simulator for performance evaluation.
Extensive experimental results validate the effectiveness
and efficiency of the proposed schemes. In particular,
by introducing a novel worker selection mechanism and
a privacy-preserving data aggregation protocol, we can
greatly improve the efficiency of the FL process without
affecting its accuracy.

The remainder of this article is organized as follows. In
Section II, we introduce our system model, security model, and
design goals. In Section III, we describe some preliminaries.
In Section IV, we propose our scheme in details. Then, in
Section V and Section VI, we present the security analysis
and performance evaluation, followed by the related work in
Section VII. Finally, we recap the conclusions in Section VIII.

II. MODELS AND DESIGNED GOALS

In this section, we first formalize our system model and
security model, and then identify our design goals.

A. System Model

In our system model (see in Fig. 1), we mainly consider
a typical F-MCS scenario, including three entities, namely,
a trusted key generator T KG, an F-MCS platform P , and a
group of heterogeneous workers W = {w1, w2, . . .}.

1) Trusted Key Generator (T KG): T KG is a trusted author-
ity that generates and distributes proper keys to the
corresponding entities so that a certain F-MCS task can
be completed cooperatively.

2) F-MCS Platform (P): P is the trusted platform for pro-
viding F-MCS services and is responsible for performing
an F-MCS task, including registering workers, initializ-
ing the task model, selecting workers, and training the
model. More specifically, upon registration, P assigns
an unique identifier IDwi to each registered worker wi,
and then broadcasts the list of workers’ identifiers to
T KG. In the training process, P first initializes the
global model and selects a fraction of qualified workers
from W (details of worker selection will be introduced
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in Section IV-B). Next, P distributes the model to the
selected workers and trains the model by aggregating
the worker-provided model parameters in each training
round. Multiple rounds of interactions between P and
the selected workers are demanded to achieve the final
global model.

3) Participating Workers W = {w1, w2, . . . }: W are the
participating workers who wish to conduct a certain
F-MCS task. If a worker in W is selected by P , at first,
he/she needs to collect the raw sensing data using his/her
mobile device(s). After receiving the global model, each
selected worker needs to update the model parameters
by training the model with his/her local data, encrypt the
model parameters, and exchange the ciphertexts with P .
To be selected in each training round, the workers need
to periodically send their current training capacities and
computational statuses to P , e.g., the size of the local
data set, the current CPU share/battery/memory of their
mobile devices.

B. Security Model

First, we consider P and T KG are fully trusted. Notably,
some malware have been installed in P by an adversary A
without being detected. Therefore, A can monitor P’s database
and eavesdrop on the communication information between
P and W . Essentially, A is interested in the model updates
that each worker uploads to the platform. With those updates,
A may infer workers’ real-time spatial–temporal information.
Besides, we consider the workers W are honest-but-curious.
So, all the workers strictly follow the designed protocols for
updating, encrypting, and uploading model parameters but
may be interested in other workers’ data resources. Moreover,
we assume that there is no collusion among workers in W ,
and workers cannot collude with P either. It is worth noting
that outside attackers may exploit other vulnerabilities of the
F-MCS platform. As this work focuses on privacy preserva-
tion, those attacks are beyond this article’s scope and will be
discussed in our future work.

C. Design Goals

Based on the system model and security model mentioned
above, our design goal is to develop an efficient and privacy-
preserving scheme for F-MCS applications. Specifically, the
following desirable properties should be achieved.

1) Efficiency: The proposed FedSky scheme should be
efficient in terms of training models and uploading
the encrypted model parameters in each communica-
tion round. Consequently, compared to the traditional
FedAvg algorithm, P’s waiting time should be short-
ened and the overall FL training efficiency should be
improved in our scheme.

2) Privacy Preservation: We plan to design a privacy-
preserving F-MCS framework, which can prevent the
confidentiality of workers’ sensitive information from
being disclosed. More specifically, for ∀wi, let Di denote
wi’s local data and xi denote wi’s updated model param-
eters after each training round, both Di and xi should be

TABLE I
SUMMARY OF NOTATIONS

kept secret to other workers. Moreover, even if A eaves-
drops P’s database and steals the communication data
between W and P , it still cannot identify each worker’s
uploaded model parameters xi.

III. PRELIMINARIES

This section briefly introduces the background about
FedAvg, constrained G-skyline (CG-skyline), Bilinear Pairing,
and Paillier Cryptosystem. For reference, a summary of fre-
quently used notations is given in Table I.

A. Fedavg Algorithm

The FedAvg [20] is a federated optimization algorithms for
training ML/DL models in FL. Essentially, there are two enti-
ties in a typical FL setting, they are: 1) the data aggregator and
2) K participating workers {w1, w2, . . . , wK}. Let Ni denote
the number of data sets that owned by worker wi. In FedAvg,
at the beginning of each round t, the data aggregator ran-
domly selects k workers from all the K candidates, and then
broadcasts the current global model xt (at round t) to each of
the k workers. After receiving the current model, worker wi

computes the average gradient on its local data set, which is
denoted by gi. Next, given a fixed learning rate η, wi calculates
xi ← xt − η · gi and uploads xi back to the data aggrega-
tor. Finally, the data aggregator updates the global model by
xt+1 ← ∑k

i=1(Ni/N)xi, where N = N1 + N2 + . . . Nk. The
details of FedAvg are shown in Algorithm 1.

B. Different Variants of Skyline Queries

In this section, we use MCS workers as examples to illus-
trate skyline [21], G-skyline [22], [23], and constrained skyline
(C-skyline) [24]. After that, we propose a novel skyline vari-
ant, called CG-skyline, which can retrieve skyline groups with
specific dimension restrictions on the data.

Definition 1 (Skyline): Given a set of K participating work-
ers W = {w1, w2, . . . , wK}, each worker can be represented
as a d-dimensional point, i.e., wi = (wi[1], wi[2], . . . , wi[d])
for i ∈ [1, K]. Without loss of generality, we assume that for
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Algorithm 1: FedAvg Algorithm [14]
1 Data aggregator executes:
2 for each training round t = 1, 2, ... do
3 Randomly selects k workers from all the K candidates
4 for each selected worker wi in parallel do
5 xi ← WorkerUpdate(i, xt)

6 Takes the weighted average of the received model parameters from
the k workers: xt+1 ←∑k

i=1
Ni
N xi

7 if The model parameters converge then
8 Training finishes.

9 else
10 Broadcasts the aggregated model parameters xt+1 to all the

workers

11

12 WorkerUpdate(i, xt): // Executed by each selected
worker

13 for each local epoch e from 1 to E do
14 batches ← randomly divides dataset Dk into batches of size S
15 for each batch b in batches do
16 Computes the batch gradient gb

i
17 Updates model parameter by xi = xt − η · gb

i

18 Send the local model parameters xi to the data aggregator

Fig. 2. Simple example of skyline, G-skyline, C-skyline, and CG-skyline
with 12 workers in terms of local data size and device’s computational power.

each dimension, larger values are more preferred. Let wa and
wb denote two workers in W , where a, b ∈ [1, K] and a �= b.
We define wa dominates wb, denoted as wa ≺ wb, if for all
j ∈ [1, d], wa[j] ≥ wb[j], and there exists at least one j such that
wa[j] > wb[j]. Specifically, We define wa equals wb, denoted
as wa = wb, if for all j ∈ [1, d], wa[j] = wb[j]. The skyline
workers of W are all the workers that are not dominated by
others in W .

Example 1: Fig. 2 shows a simple example of 12 work-
ers. Each worker is represented by two attributes: 1) local
data size and 2) local device’s computational power. Based
on Definition III-B, w1, w3, w4, w5, and w6 are the skyline
workers.

Definition 2 (k-Point G-Skyline): Given a set of workers W ,
let G = {w1, w2, . . . , wk} and G′ = {w′1, w′2, . . . , w′k} be two
different groups with size k, where k ≤ K and G, G′ ⊆ W .
Based on [22], we say G g-dominates G′, denoted by G ≺g G′,
if we can find two permutations of k points for G and G′, i.e.,
G = {wu1, wu2, . . . , wuk} and G′ = {w′v1, w′v2, . . . , w′vk}, such

that wui � w′vi for all i ∈ [1, k], and there exists at least one i
for wui ≺ w′vi. Consequently, the k-point G-skyline consists of
all the skyline groups with k workers that are not g-dominated
by other groups with the same size.

Example 2: In Fig. 2, if we consider k = 3, then for two
groups G = {w3, w4, w5} and G′ = {w2, w9, w10}, we have
G ≺g G′ due to w3 ≺ w2, w4 ≺ w9, and w5 ≺ w10. Moreover,
G = {w3, w4, w5} is a 3-point G-skyline group since there
exists no other group with the same size g-dominates G.

Definition 3 (C-Skyline): Given a set of d-dimensional
workers W , let C = {Con1,Con2, . . . ,Cond} denote a set of
d constraints, where each Coni for i ∈ [1, d] is either a range
[mini, maxi] along a dimension or an empty set ∅ indicating no
constraint in that dimension. Typically, the conjunction of all
constrains in C forms a constraint region in the d-dimensional
attribute space. C-skyline [24]–[26] retrieves all the skyline
points in the constraint region.

Definition 4 (k-Point CG-Skyline): Given a set of
d-dimensional workers W and a set of constraints C =
{Con1,Con2, . . . ,Cond}, the k-point CG-skyline consists of
all the skyline groups in the constraint region with k workers
that are not g-dominated by other groups with the same size.

Example 3: In Fig. 2, C = {Con1,Con2} is a constraint
set, where Con1 = [1, 5] and Con2 = [1, 7]. The correspond-
ing constraint region is the light blue area in the figure. The
C-skyline workers are w3, w4, and w5 (since w1 and w6 are not
in the constraint region). Besides, group G = {w1, w4, w5} is
a 3-point G-skyline group but not a 3-point CG-skyline group
because worker w1 is not in the constraint region.

C. Bilinear Pairing

Let G and GT be two cyclic groups of the same prime order
q. g is a generator of group G. Assume that G and GT are
equipped with a pairing, and a nondegenerated and efficiently
computable bilinear map e : G×G→ GT has the following
properties [27], [28].

1) Bilinearity: For all x, y ∈ G, then e(xa, yb) = e(x, y)ab

for a, b ∈ Z
∗
q.

2) Nondegeneracy: e(g, g) �= 1GT .
3) Computability: For all x, y ∈ G, there exists an efficient

algorithm to compute e(x, y) ∈ GT .

D. Paillier Cryptosystem

The Paillier cryptosystem consists of key generation
KeyGen(κ), encryption E(pk, m), and decryption D(sk, c).

1) KeyGen(κ): Given a security parameter κ , two big
primes p and q are first chosen such that |p| = |q| = κ .
Then, n = pq and λ = lcm(p − 1, q − 1) are com-
puted. Given a function L(u) = (u− 1)/n, let g denote
a generator of Z∗

n2 , μ = (L(gλ mod n2))−1. The public
key is pk = (n, g), and the corresponding private key is
sk = (λ, μ).

2) E(pk, m): Given a plaintext m ∈ Zn and a random
number r ∈ Z

∗
n, the ciphertext can be calculated as

c = E(pk, m) = gm · rn mod n2.
3) D(sk, c): Given the ciphertext c ∈ Z

∗
n2 , m can be

recovered as m = D(sk, c) = L(cλ mod n2) ·μ mod n.
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Fig. 3. Overall workflow of the FedSky scheme.

In the Paillier cryptosystem, the product of two cipher-
texts can be decrypted to the sum of their corresponding
plaintexts, i.e.,

D
(

sk,E(pk, m1) · E(pk, m2) mod n2
)
= m1 + m2 mod n. (1)

IV. PROPOSED SCHEME

In this section, we propose a novel data aggregation
scheme for F-MCS called FedSky, which mainly consists of
three phases: 1) key distribution (KeyDist); 2) worker selec-
tion (WorkSel); and 3) data aggregation (DataAgg). In the
KeyDist phase, T KG will generate keys and then distribute
them to the correct entities. In the WorkSel phase, P will
select an optimal group of workers by k-point CG-skyline.
Finally, in the DataAgg phase, the selected workers need to
train the model, encrypt the updated model parameter xi, and
securely send it to P . Finally, P decrypts the ciphertexts to get
the final aggregation results. The overall workflow of FedSky
is shown in Fig. 3.

A. KeyDist Phase

First, T KG computes (p, q, n, λ, μ) by running KeyGen(κ)

and generates the public key pkp = (n, g) and the private key

skp = (λ, μ). Next, T KG chooses an uniform cryptographic
hash function H1, where H1 : {0, 1}∗ → Zn2 and a bilinear
pairing map e : G × G → GT . After that, T KG broadcasts
(pkp, H1, e : G × G → GT) to P and all the workers in the
system, and securely sends skp to P .

In the next step, T KG chooses another cryptographic hash
function H2 such that H2 : {0, 1}∗ → Zn. Then, T KG
chooses a random number S ∈ Z

∗
n as the master key. For

∀wi ∈ W , given wi’s identifier IDwi , where IDwi = H0(wi)

and H0 : {0, 1}∗ → G, T KG calculates IDS
wi

. Last, T KG
shares H2 to all the workers and securely sends IDS

wi
to wi.

B. WorkSel Phase

In this article, each worker wi has two attributes: 1) the size
of wi’s local data set Ni and 2) wi’s mobile device’s computa-
tional power Pi. Same as [8], we assumed that Pi is measured
by how many data samples a worker can process per minute for
the F-MCS task. Each worker wi is required to periodically
send Ni and Pi to platform P . Before worker selection, P
first defines a set of 2-D constraints C = {Con1,Con2} based
on the F-MCS task requirements. For higher requirements
(e.g., higher accuracy and less training latency), the constraints
Con1 and Con2 should be chosen more strictly. Specifically,
for Con1 = [min1, max1] and Con2 = [min2, max2], we
say Con1 is more strictly than Con2 if min1 > min2 and
max1 > max2. After that, P selects the set of workers W ′ for
W ′ ⊆W whose current information matches the constraints.

Before each training round, P will select an optimal group
of k workers from W ′ by CG-skyline in terms of Ni and Pi.
The details of the proposed approach are discussed as follows.

For each worker wi in W ′, P first calculates Sum(wi) where
Sum(wi) = Ni + Pi. Then, all the workers are added in a
preinitialized Max Priority Queue QW by Sum(wi), where all
the workers are sorted by Sum(wi) in a descending order and
the workers with larger Sum(wi) values will be removed earlier
from QW than the workers with smaller Sum(wi) values. It is
worth noting that the magnitudes of Pi and Ni should be in the
same level, such that the sum of Pi and Ni is not dominated
by any of the two attributes. Based on the definition of skyline
discussed in Section III-B, we have the following theorems.

Theorem 1: Let wi denote a worker with Ni as the number
of data samples owned by wi and Pi as wi’s computational
power. If wi is the first worker being removed from QW , then
wi is a skyline worker.

Proof: Assume that there exists another worker w′i such
that w′i ≺ wi. Let N′i and P′i denote the number of data sam-
ples owned by w′i and w′i’s computational power, respectively.
Based on the definition of skyline, w′i is better than wi for
at least one attribute, and not worse than wi for the rest of
attributes. It is easy to know that N′i + P′i > Ni + Pi, i.e.,
Sum(w′i) > Sum(wi). Therefore, w′i should be removed first
from QW , which contradicts our assumption that wi is the
first worker to be removed. Therefore, such w′i does not exist
and our theorem holds.

Theorem 2: For ∀wj ∈ W ′, all the workers who dominate
wj will be removed earlier from QW than wj.

Proof: Let w′j denote one of the workers who dominate
wj. Again, based on the definition of skyline, it is easy to have
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Algorithm 2: CG-Skyline-Based Worker Selection
Input: A worker database W = {w1, w2, ..., wK} where wi = (Ni, Pi)

for i ∈ [1, K], a given set of two constraints
C = {Con1,Con2}

Output: A set of selected workers with size k
1 P finds the set of workers W ′ based on C = {Con1,Con2}
2 P initializes an empty Max Priority Queue QW
3 for ∀wi ∈W ′ do
4 P calculates Sum(wi) = Ni + Pi
5 P adds wi into QW by the value of Sum(wi)
6 end
7 P initializes another empty Max Priority Queue Qnon and an empty list

Qsky
8 P removes the first worker in QW and adds this worker into Qsky
9 for ∀wi ∈ QW do

10 P removes wi from QW
11 P compares the dominance relationship between wi and all the

workers in Qsky
12 if ∃ wj ∈ Qsky s.t. wj ≺ wi then P adds wi into Qnon;
13 else P adds wi into Qsky;
14 end
15 if k′ < k where k′ is number of workers in Qsky then
16 P adds the first k − k′ workers from Qnon into Qsky
17 end
18 return The workers in Qsky

Fig. 4. Illustration example of the proposed worker selection approach for
CG-skyline computation.

Sum(w′j) > Sum(wj). Consequently, w′j will be removed earlier
than wj from QW .

Next, P initializes another empty Max Priority Queue Qnon
and an empty list Qsky. Then, P goes through the workers in
QW . By Property 1, the first worker will be removed from QW
and directly added into Qsky. The next removed worker from
QW will be compared with the workers(s) in Qsky. If he/she is
not dominated by all the worker(s) in Qsky, then this worker
will be added in Qsky. Otherwise, based on Property 2, P can
safely add this worker in Qnon. P repeats the steps above for
the remaining workers until either the number of workers in
Qsky equals k or QW is empty. Let k′ denote the final number
of workers in Qsky. If k′ < k, then P removes the first k − k′
workers from Qnon and adds them into Qsky. In this way, we
can select skyline workers as much as possible. The proposed
worker selection approach is shown in Algorithm 2.

Example 4: Fig. 4 shows a simple example of the proposed
worker selection approach for the CG-skyline query. The

Fig. 5. Example of 5 selected workers in a loop, where the workers have no
interactions with each other. In the example, each worker wi calculates Sip,
then we can simply get

∑5
i=1 Sip mod n = (S1p+S2p+S3p+S4p+S5p) mod

n = 0.

12 workers in Example 1 are added in the Max Priority
Queue QW by Sum(wi). After that, they are removed one
by one from QW and added into either Qsky or Qnon. In par-
ticular, w5, w4, w3, w6, and w1 are added into Qsky because
they are skyline workers. The rest of the workers (i.e.,
w10, w2, w8, w12, w9, w11, w7) are added into Qnon because
they are dominated by at least one worker in Qsky. In this
example, k′ = 5. If k ≤ k′, then the first k workers are the
results for the k-point CG-skyline query. For example, if k = 3,
then {w5, w4, w3} are selected. However, if k > k′, then all the
workers in Qsky plus the first k−k′ workers are the final results.
For example, if k = 7, then {w5, w4, w3, w6, w1, w10, w2} are
selected.

It is worth noting that the proposed CG-skyline technique
can only select one G-skyline workers. It cannot find all the
G-skyline workers that are not dominated by other groups.
After worker selection, the MCS platform P broadcasts the
global model’s hyperparameters (e.g., the learning rate) to all
the selected workers, which can be used by the workers to
train and optimize the model in the next step.

C. DataAgg Phase

Let Ws denote a group of k selected workers, i.e., Ws =
{w1, w2, . . . , wk}. At the beginning of each training round, for
∀wi ∈Ws, P calculates yi = Ni/(N1 + N2 + · · · + Nk) as the
weight for wi’s model parameter. Each yi is rounded to three
decimal places. Next, P amplifies each yi by 1000 to convert
it as a positive integer, i.e., yi ← yi · 1000. The detailed steps
of the DataAgg phase are introduced as follows.

Step 1: P puts all the k workers from Ws in a loop. In the
loop, wi+1 is wi’s right neighbor and wi−1 is wi left neighbor
for i ∈ [2, k − 1]. Particularly, wk is w1’s left neighbor and
w1 is wk’s right neighbor. Fig. 5 shows an example of such a
loop with five workers.

Step 2: P generates a random number αi ∈ Z
∗
n. Next, P

sends the following information to wi:
⎧
⎪⎪⎨

⎪⎪⎩

The current global model xt(at round t)
the ID of wi’s left neighbor IDwi→l

the ID of wi’s right neighbor IDwi→r

Ci = gyi · H1(t)n·αi mod n2

(2)
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where i→ l and i→ r are indices of wi’s left neighbor and
right neighbor, respectively. Moreover, t is the current training
round (e.g., t = 0, 1, 2, etc.). Therefore, the value of t changes
in each training round.

Step 3: Upon receiving the above information, wi first cal-
culates the average gradient gi based on his/her local data set.
Next, given a fixed learning rate η, wi computes the updated
local model parameter xi by xi ← xt − η · gi. Besides, to keep
the original information as much as possible, we assume that
each worker wi retains xi to eight decimal places. So, after
each local training round, wi needs to convert xi to a positive
integer x̄i in Zn by x̄i = 108 · xi mod n.

Step 4: Next, wi computes C̄i, the left session key S(i,i→l),
the right session key S(i,i→r), and the processing key Sip as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C̄i = Cx̄i
i = gx̄i·yi · H1(t)x̄i·n·αi mod n2

S(i,i→l) = H2
(
e
(
IDS

wi
,IDwi→l

)) = H2

(
e
(
IDwi ,IDwi→l

)S
)

S(i,i→r) = H2
(
e
(
IDS

wi
,IDwi→r

)) = H2

(
e
(
IDwi ,IDwi→r

)S
)

Sip = S(i,i→l) − S(i,i→r) mod n.

(3)

After that, wi calculates πi as follows and sends πi to P:

πi = C̄i · H1(t)
Sip mod n2

= gx̄i·yi · H1(t)
x̄i·n·αi · H1(t)

Sip mod n2. (4)

Step 5: P needs to first check if ∃ wi who does not submit
πi. If yes, then P aborts the protocol and starts a new training
round. If all the k workers submit their πi(s), P calculates
θ =∏k

i=1 πi mod n2, which can be represented as

θ = g
∑k

i=1 x̄i·yi · H1(t)
n·∑k

i=1 x̄i·αi · H1(t)
∑k

i=1 Sip mod n2. (5)

Letting m̄ =∑k
i=1 x̄i · yi, P can decrypt m̄ by D(sk, c) as

m̄ =
k∑

i=1

x̄i · yi mod n = L
(
θλ mod n2

)
· μ mod n. (6)

The correctness of (6) is given as follows. First, given Ws,
we know that the sum of all the k workers’ the processing
keys Sip is

∑k
i=1 Sip = S1p+S2p+· · ·+Skp = S(1,k)−S(1,2)+

S(2,1) − S(2,3) + · · · + S(k,k−1) − S(k,1) mod n. Based on (3)
and the property of bilinear pairing, we know S(i,j) = S(j,i) =
H2(e(IDwi ,IDwj)

S). Therefore,
∑k

i=1 Sip = 0 mod n as long
as k > 1 and we can write

∑k
i=1 Sip = γ · n for an integer γ .

Then, (5) can be written as

θ = g
∑k

i=1 x̄i·yi · H1(t)
n·∑k

i=1 x̄i·αi · H1(t)
γ ·n mod n2

= g
∑k

i=1 x̄i·yi · H1(t)
n·

(∑k
i=1 x̄i·αi+γ

)

mod n2. (7)

If we consider H1(t)
∑k

i=1 x̄i·αi+γ mod n2 as a random number
r, θ = gm̄ · rn mod n2 is still a valid Paillier ciphertext and can
be decrypted by D(sk, c). Since m can be either positive (less
than n/2) or negative (larger than n/2), P can then recover
m by

{
m = 10−11 · m̄, if m̄ < n

2
m = 10−11 · (m̄− n), otherwise.

(8)

Note that as the original values of xi and yi have been,
respectively, amplified by 103 and 108, the multiplication of
10−11 here is to recover the true value of m =∑k

i=1 xi · yi.
After recovering m, P can update the global model for round

t + 1 by xt+1 ← ∑k
i=1(Ni/N)xi = m. Next, P will start the

next training round by repeating all the above-mentioned steps
until the global model achieves a desired performance.

V. SECURITY ANALYSIS

In this section, we analyze the security properties of the
FedSky scheme. Essentially, given ∀wi ∈ Ws and his/her
uploaded model parameter xi, our analysis will focus on how
FedSky is privacy preserving in protecting each wi’ uploaded
model parameter xi from being disclosed in the whole pro-
cess of F-MCS. Particularly, based on the assumption that
P does not collude with the workers, P can get a list of
intermediate variables (π1, π2, . . . , πk) from the k workers
where πi = gx̄i·yi · H1(t)x̄i·n·αi · H1(t)Sip mod n2 for i ∈ [1, k].
Here, we first prove that the intermediate variable πi is seman-
tically secure against the chosen-plaintext attack (CPA) and
then prove the security of our scheme.

A. Semantic Security of πi

Assume that there exist a probabilistic polynomial time
(PPT) adversary A and a hypothetical challenger C. The
semantic security of πi can be proved by a game between
A and C as follows.

First, C runs the key generation algorithm (in Section IV-A)
to generate pkp = (n, g), skp = (λ, μ) and the hash function
H1. Then, C sends skp to A.

Upon receiving skp, A chooses two messages x0, x1 ∈ Zn,
two random numbers y, α ∈ Z

∗
n, and a random integer t ∈

[1, 100]. Then, A sends (x0, x1, y, α, t) to C.
After receiving (x0, x1, y, α, t), C first flips a bit b ∈ {0, 1}

and generates a random number Sp ∈ Zn. Then, C computes
πb = gxb·y · H1(t)xb·n·α · H1(t)Sp mod n2 and returns πb as a
ciphertext back to A.

Finally, A returns C a bit b′ ∈ {0, 1} as the guess of b. As
g is the generator of Z

∗
n2 , there must exist an unique integer

h ∈ Z∗n such that H1(t) = gh mod n2 and h is unknown to A.
Consequently, πb can be written as

πb = gxb·y · H1(t)
xb·α·n · gh·Sp mod n2

= gxb·y+h·Sp · H1(t)
xb·α·n mod n2. (9)

Here, πb can be considered as a valid Paillier ciphertext;
thus, A can decrypt m̃ = (xb · y+ h · Sp) mod n from πb.

Next, with (x0, x1, y), A can put x0 or x1 into m̃ and cal-
culate m̃ = xb · y + h · Sp = x1−b · y + h′ · Sp mod n for
h′ ∈ Z∗n . Furthermore, A knows that h′ can be represented as
h′ = (m̃− x1−b · y/Sp) mod n. However, since Sp is generated
by C, A has no idea about the value of Sp. Therefore, h′ is also
an unknown and random value to A. So A cannot distinguish
between h′ and h. Consequently, A cannot correctly decide
if b′ = 0 or 1 with a probability higher than 1/2 (i.e., the
probability of a random guess). As a result, πi is semantically
secure against P in the proposed FedSky scheme.
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B. Security of FedSky

In this section, we first define our scheme’s leakage function
from the perspective of P . Next, we prove the security of the
proposed scheme FedSky in the real/ideal world model.

In the FedSky scheme, the information leaked to P includes:
1) the Paillier public key pkp and secret key skp; 2) the hash
function H1; 3) the bilinear pairing map e; 4) the list of
local data set sizes (N1, N2, . . . ) and computational powers
(P1, P2, . . . ); 5) the list of parameter weights (y1, y2, . . . , yk)

from the k selected workers; and 6) m̄ and m where m̄ =∑k
i=1 x̄i · yi mod n and m = ∑k

i=1 xi · yi mod n. Let L(P)

denote the leakage function regarding P , L(P) = {pkp,
skp, H1, e, (N1, N2, . . . ), (P1, P2, . . . ), (y1, y2, . . . , yk), m̄, m}.
Based on L(P), we define the real/ideal world model as
follows.

Real World: In the real world, there exist a PPT adversary
A and a challenger C. C interacts with A as follows.

1) KeyDist Phase: The challenger C runs the key gen-
eration algorithm in Section IV-A to create pkp =
(n, g), skp = (λ, μ), the hash function H1, and the bilin-
ear pairing map e. Next, C publishes (pkp, H1, e), and
sends skp to A.

2) WorkSel Phase: C sends the list of local data set
sizes (N1, N2, . . . ) and device’s computational powers
(P1, P2, . . . ) to A. After that, A runs the k-point CG-
Skyline algorithm to select k workers. Next, A calculates
Ci = gyi · H1(t)n·αi mod n2 for each worker wi, where
i ∈ [1, k] and sends (C1, C2, . . . , Ck) to C.

3) Challenge Phase: Upon receiving (C1, C2, . . . , Ck), C
calculates (π1, π2, . . . , πk) based on the FedSky scheme
and sends (π1, π2, . . . , πk) to A.

4) DataAgg Phase: After receiving (π1, π2, . . . , πk), A
decrypts m̄ = ∑k

i=1 x̄i · yi mod n by (7) and calculates
m =∑k

i=1 xi · yi mod n based on (8).
Let View(A,Real) denote A’s view in the real world. We

have View(A,Real) = (π1, π2, . . . , πk), where πi = gx̄i·yi ·
H1(t)x̄i·n·α · H1(t)Sip mod n2 for i ∈ [1, k].

Ideal World: In the ideal world, there exist a PPT adversary
A and a simulator S . Besides, S can get access to the leakage
function L(P). The simulator S interacts with the adversary
A as follows.

1) KeyDist Phase: Based on the leaked information in
L(P), S publishes (pkp, H1, e) and sends skp to A.

2) WorkSel Phase: Based on L(P), S sends the list of
local data set sizes (N1, N2, . . . ) and device’s compu-
tational powers (P1, P2, . . . ) to A. Then, A runs the
CG-Skyline algorithm to select k workers. Next, A cal-
culates Ci = gyi · H1(t)n·αi mod n2 for each worker wi,
where i ∈ [1, k]. Finally, A sends (C1, C2, . . . , Ck) to S .

3) Challenge Phase: In this phase, S’s main goal is to
generate a list of (π ′1, π ′2, . . . , π ′k) to replace the list of
(π1, π2, . . . , πk). Specifically, the list of (π ′1, π ′2, . . . , π ′k)
should be generated with random values based on
L(P). Moreover, using (π ′1, π ′2, . . . , π ′k), A should
decrypt the same value of m as using (π1, π2, . . . , πk)
in the real world. S generates (π ′1, π ′2, . . . , π ′k) as
follows.

a) First, S randomly selects k − 1 numbers
(x′1, x′2, . . . , x′k−1) such that x′i ∈ Z

∗
n for i ∈

[1, k− 1]. Then, given m =∑k
i=1 xi · yi mod n and

(y1, y2, . . . , yk) ∈ L(P), S calculates x′k as

x′k =
(

m−∑k−1
j=1 x′j · yj

)

yk

=
(∑k

i=1 xi · yi −∑k−1
j=1 x′j · yj

)

yk
mod n. (10)

In this case, it is easy to have m =∑k
i=1 xi · yi =∑k

i=1 x′i · yi mod n. Next, S calculates a list of
(x̄1
′, x̄2
′, . . . , x̄k

′), where x̄i
′ = 108 · x′i mod n for

i ∈ [1, k].
b) S randomly chooses a sequence of k numbers

(α1, α2, . . . , αk) and another sequence of k − 1
numbers (S′1p, S′2p, . . . , S′(k−1)p), where αi, S′jp ∈ Z

∗
n

for i ∈ [1, k], j ∈ [1, k − 1]. Next, S calculates
S′kp as

S′kp = −
(

S′1p + S′2p + · · · + S′(k−1)p

)
mod n. (11)

Therefore, it is easy to have
∑k

i=1 S′ip = 0 mod

n. Hence, we can write
∑k

i=1 S′ip = γ ′ · n for an
integer γ ′.

c) S can finally generate the list of (π ′1, π ′2, . . . , π ′k),
where π ′i = gx̄i

′·yi ·H1(t)x̄i
′·αi·n ·H1(t)

S′ip mod n2 for
i ∈ [1, k]. Finally, S sends (π ′1, π ′2, . . . , π ′k) to A.

4) DataAgg Phase: After receiving (π ′1, π ′2, . . . , π ′k), A
first calculates θ ′ =∏k

i=1 π ′i mod n2 as

θ ′ = g
∑k

i=1 x̄i
′·yi · H1(t)

n·∑k
i=1 x̄i

′·αi · H1(t)
∑k

i=1 S′ip

= g
∑k

i=1 x̄i
′·yi · H1(t)

n·∑k
i=1 x̄i

′·αi · H1(t)
γ ′·n

= g
∑k

i=1 x̄i
′·yi · H1(t)

n·
(∑k

i=1 x̄i
′·αi+γ ′

)

mod n2. (12)

Similar to the methods in Section IV-C, by considering
θ ′ as a valid Paillier ciphertext, A can decrypt m̄′ =∑k

i=1 x̄i
′ ·yi mod n. Finally, by (8), A can calculate m′ =

∑k
i=1 x′i ·yi =∑k

i=1 xi ·yi mod n, i.e., A can get the same
result as in the real world.

Let View(A,Ideal) denote A’s view in the ideal world. We
have View(A,Ideal) = (π ′1, π ′2, . . . , π ′k), where π ′i = gx̄i

′·yi ·
H1(t)x̄i

′·n·α · H1(t)
S′ip mod n2 for i ∈ [1, k].

In Section V-A, we have already proved the semantic
security of πi against CPA. Therefore, A’s view in real
world, i.e., View(A,Real) = (π1, π2, . . . , πk), is computation-
ally indistinguishable from its view in the ideal world, i.e.,
View(A,Ideal) = (π ′1, π ′2, . . . , π ′k). As a result, the proposed
FedSky scheme is secure with the leakage function L(P).

VI. PERFORMANCE EVALUATION

In this section, we study the performance of FedSky in
terms of time consumption and model accuracy. Particularly,
first, we simulated 1000 heterogeneous workers with differ-
ent computational powers in an F-MCS environment. Then,
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Fig. 6. Running time for CG-skyline-based worker selection with different
number of selected workers in each training round.

we compare the time consumption for the FedSky scheme
across various experimental settings, including the number of
selected workers and the number of training rounds. Second,
with the simulated F-MCS environment, we deployed an
object classification task on the MNIST data set with FedSky
and compared the model accuracy between independent and
identical distribution (IID) data and non-independent and iden-
tical distribution (Non-IID) data. The details of performance
evaluation are presented as follows.

A. Experimental Setting

In our experiment, we simulated an F-MCS environment
including 1000 heterogeneous workers (i.e., K = 1000) with
different computational powers. We assumed that Pi follows
the Gaussian distribution with 50 samples/min as the mean
value and sd the as the standard deviation, where sd = 5 or
15 in the experiment.
P initialized an object classification task on the MNIST

data set. The MNIST data set is a large database of hand-
written digits commonly used for training image processing
systems. In the simulation, we assumed that every worker
has Ni handwritten digits images, where Ni also follows the
Gaussian distribution with 500 as the mean value as 50 as the
standard deviation. Then, by following the experimental setup
in [8] and [29], we designed two ways for distributing the
training samples to the workers.

1) IID: There are ten classes (e.g., digits 0–9) in the MNIST
data set. In the IID setting, each worker is randomly
sampled Ni images across the ten classes from the
training data set.

2) Non-IID: In the Non-IID setting, each worker is still
sampled Ni image samples, yet 70% of which come
from a dominant class and the remaining 30% belong to
other classes. For instance, if Ni = 500 for a worker wi,
then she owned 350 images from class “0,” while the
remaining 150 images are randomly distributed among
class “1” to “9.”

In each training round, P selects k workers from 1000 can-
didates by CG-skyline, where k varies from 10 to 200 in
the experiment. There are two constraints Con1 and Con2

(a)

(b)

(c)

(d)

Fig. 7. Comparison of training time (h) per round between FedSky and
FedAvg for different numbers of workers with sd = 5. (a) Comparison of
workers’ local training time (h) per round between FedSky and FedAvg with
sd = 5 for 10 workers. (b) Comparison of workers’ local training time
(h) per round between FedSky and FedAvg with sd = 5 for 20 workers.
(c) Comparison of workers’ local training time (h) per round between FedSky
and FedAvg with sd = 5 for 50 workers. (d) Comparison of workers’ local
training time (h) per round between FedSky and FedAvg with sd = 5 for 100
workers.

for Ni and Pi, respectively. We set Con1 = [100,+∞] and
Con2 = [10,+∞]. In the experiment, the security parameter
κ is set to 512, i.e., |p| = |q| = 512 and n = 1024.
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(a)

(b)

(c)

(d)

Fig. 8. Comparison of workers’ local training time (h) per round between
FedSky and FedAvg for different numbers of workers with sd = 15.
(a) Comparison of workers’ local training time (h) per round between FedSky
and FedAvg with sd = 15 for 10 workers. (b) Comparison of workers’ local
training time (h) per round between FedSky and FedAvg with sd = 15 for
20 workers. (c) Comparison of workers’ local training time (h) per round
between FedSky and FedAvg with sd = 15 for 50 workers. (d) Comparison
of workers’ local training time (h) per round between FedSky and FedAvg
with sd = 15 for 100 workers.

Moreover, we deployed a standard convolutional neural
network (CNN) as the global model. Particularly, in the CNN
model, there are three convolution layers with ReLU as the

Fig. 9. Breakdowns of overall running time for 100 training rounds in terms
of local training and data aggregation k = 10, 20, 50, and 100.

activation function, followed by one fully connected layer acti-
vated by a Softmax function. The hyperparameters for training
the model are as follows: the minibatch size is 50, the num-
ber of epochs in each round is 10, the initial learning rate is
0.01 and 0.9 for learning rate decay, and the number of train-
ing rounds is 100. The designed CNN model is implemented
using the PyTorch API for the FL framework.

All the experiments are implemented with Python program-
ming language conducted experiments on a machine with
an Intel Core i7-6700 CPU @3.60-GHz, 16-GB RAM, and
Windows 10 operating system.

B. Evaluation Results

In this section, we describe the evaluation results in the
experiments. Fig. 6 compares the running time (in second)
for worker selection based on the CG-skyline technique with
different k. The CG-skyline is performed in terms of Ni and Pi.
For each value of k, the experiment is conducted 10 000 times
and the average result is reported. From Fig. 6, we can see
that the running time increases as the increasing of k. Clearly,
worker selection can be finished in a very short period of
time (in the order of 10−4 s to 10−2 s). Compared to the
traditional FedAvg scheme, although we add an extra worker
selection phase in each training round, the efficiency of the
overall process is not affected.

Figs. 7 and 8 compare the running time (in hour) for each
training round between FedSky and FedAvg for different number
of workers with sd = 5 and 15, respectively. As mentioned in
Section I, we consider the synchronous training protocol, where
no worker can proceed to the next training round until all the
k workers’ data have been uploaded in the current round. Each
training round’s running time is restricted by the worker who has
the poorest computational power. Therefore, in Figs. 7 and 8,
the time required by the worker with the poorest computational
power is the running time for each training round.

Notably, the standard deviation sd represents the uncertainty
and heterogeneity of workers’ computational powers. The
larger sd indicates the higher heterogeneity among workers’
computational capacities. From Figs. 7 and 8, we can summa-
rize that, under all the experimental settings, the running time
for each training round in FedSky is lower than that in FedSky,
indicating the efficiency of FedSky. Specifically, we can see
that for FedAvg, the variance of running time is proportional
to both the number of selected workers k and the standard
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(a) (b)

Fig. 10. Performance comparison of the deep learning model between the IID and Non-IID data settings with k = 10, 20, 50, and 100. (a) Accuracy of the
deep learning model with different number of workers on IID MNIST data. (b) Accuracy of the deep learning model with different number of workers on
non-IID MNIST data.

deviation for computational power sd. Under the experimental
setting of k = 100 and sd = 15, the maximum training time
for FedSky can be as high as 6 h. On the other hand, we note
that neither the number of selected workers k nor the standard
deviation sd can greatly affect the performance of FedSky. For
all the experimental settings, FedSky takes about 0.2 h to fin-
ish one training round, indicating the reliability and stability of
FedSky in terms of time consumption. The performance dif-
ference between FedSky and FedAvg is even more significant
as the increase of k and sd.

In Fig. 9, we compare the breakdowns of the overall running
time for 100 training rounds in terms of workers’ local training
time and the platform’s aggregation time. Same as [10], we
found that for both FedSky and FedAvg, workers’ local train-
ing time dominates the overall time consumption of the FL
process. Especially, in FedAvg, the F-MCS platform can per-
form data aggregation very quickly. However, most of its time
is wasted on waiting for the last worker to send the encrypted
model updates. For instance, in FedAvg, the actual computa-
tion time for the platform P to aggregate and decrypt data
only accounts for 5% to 13% of the whole time span. In con-
trast, FedSky can greatly increase workers’ training efficiency
and reduce P’s idle time. For instance, when k = 100, P’s
idle time will be decreased from 87% (in FedAvg) to 79%
(in FedSky). Overall speaking, by introducing an extra worker
selection phase, FedSky can select qualified workers in terms
of local data size and computational power. The time con-
sumption of worker selection in FedSky is quite low (in the
order of 10−2 to 10−4 s). But the overall efficiency of the
training process can be greatly improved.

Fig. 10 shows the comparison of model performance with
the different numbers of selected workers for both IID and
Non-IID settings. We can see that for both cases, select-
ing more workers can lead to better classification accuracies.
Besides, we note that when k = 100, it takes only about
ten rounds to achieve 96% target accuracy in the IID setting.
However, it takes about 100 rounds to achieve similar accuracy
in the Non-IID setting. Notably, data samples across mobile
workers are usually Non-IID in the real-world F-MCS scenar-
ios. Hence, the F-MCS service needs more training rounds to
achieve a satisfactory result.

VII. RELATED WORK

A. Worker Selection in MCS

Worker selection is always a fundamental problem in MCS
applications. Tong et al. [30] proposed a microtask alloca-
tion problem in spatial crowdsourcing. In their study, they
focused on the simple tasks any individual can perform with
the smart devices. Specifically, they used the online maximum
weighted bipartite matching problem as the baseline algorithm
and introduced a two-phase-based framework to improve the
baseline’s efficiency. Zhao et al. [31] studied a destination-aware
task assignment problem that concerns the optimal strategy of
assigning each task to proper workers. Consequently, the total
number of completed tasks can be maximized while all workers
can reach their destinations before deadlines after performing
the assigned tasks. Zhao et al. [32] focused on a novel spatial
crowdsourcing problem, namely, the predictive task assign-
ment, which aimed to maximize the number of assigned tasks
by considering both current and future workers in a dynamic
way. Zhang et al. [33] proposed a privacy-preserving worker
selection scheme for the MCS platform based on the proba-
bilistic skyline query over sliding windows. Their work can
continuously select reliable workers in terms of working expe-
rience, expiry time, and trustability without revealing workers’
sensitive information. Unlike the above studies, in this article,
we considered the worker selection problem under the F-MCS
circumstance, where the task is complicated (e.g., image clas-
sification or object detection) and the model needs to be trained
across workers’ local data sets.

B. Privacy-Preservation Federated Learning

Zhang et al. [10] proposed a HE-based scheme for cross-
silo FL. Instead of encrypting individual gradients, they
encoded a batch of quantized gradients into a long inte-
ger and encrypted it in one go. The experimental results
showed that the proposed method can significantly increase
the training speedup while reducing the communication over-
head. Li et al. [15] designed a cross-silo FL scheme to detect
cyberthreats in industrial cyber–physical systems based on the
Paillier cryptosystem. Their system model contains one cloud
server and multiple physical infrastructures (i.e., workers). The
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cloud server aggregates the encrypted model updates and sends
the encrypted model to the workers. Each worker holds the
private key and decrypts the model to build a local intrusion
detection system. Mandal and Gong [13] presented a privacy-
preserving system for training linear and logistic regression
models. Their proposed model can guarantee data and model
privacy as well as ensuring robustness to users dropping out
in the network. The core of their training protocols is a secure
multiparty global gradient computation on alive users’ data.
Their security goal is to protect the trained model from being
leaked to the user, but we do not guarantee this assumption
in our work. Overall, most of the existing solutions focus
on privacy-preserving data aggregation in the cross-silo FL
system for different applications.

VIII. CONCLUSION

In this article, we have proposed a privacy-preserving
scheme for F-MCS applications, called FedSky. By extending
the classic FedAvg algorithm, FedSky selects qualified work-
ers based on the CG-skyline technique and securely aggregate
model updates for training the global model. Particularly, com-
pared to FedAvg, our scheme considers the workers’ dynamics
and heterogeneous natures. It can significantly improve the
efficiency of model training process in F-MCS. Besides, we
have designed a novel privacy-preserving data aggregation pro-
tocol based on the additive HE system. This protocol is exclu-
sively designed for the cross-device FL setting and requires
no interactions between workers during the model training
process. Security analysis demonstrated that the proposed
scheme is privacy preserving. Extensive experiments have been
conducted on a real-world image classification task. The com-
parison results validated the efficiency of worker selection and
the robustness of FedSky against heterogeneous workers. For
future work, we will extend FedSky in the real-world object
detection problem.
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